Convolutional neural network models of neuronal responses in macaque V1 reveal limited non-linear processing

Author:

Miao Hui-YuanORCID,Tong Frank

Abstract

AbstractComputational models of the primary visual cortex (V1) have suggested that V1 neurons behave like Gabor filters followed by simple non-linearities. However, recent work employing convolutional neural network (CNN) models has suggested that V1 relies on far more non-linear computations than previously thought. Specifically, unit responses in an intermediate layer of VGG-19 were found to best predict macaque V1 responses to thousands of natural and synthetic images. Here, we evaluated the hypothesis that the poor performance of lower-layer units in VGG-19 might be attributable to their small receptive field size rather than to their lack of complexityper se. We compared VGG-19 with AlexNet, which has much larger receptive fields in its lower layers. Whereas the best-performing layer of VGG-19 occurred after seven non-linear steps, the first convolutional layer of AlexNet best predicted V1 responses. Although VGG-19’s predictive accuracy was somewhat better than standard AlexNet, we found that a modified version of AlexNet could match VGG-19’s performance after only a few non-linear computations. Control analyses revealed that decreasing the size of the input images caused the best-performing layer of VGG-19 to shift to a lower layer, consistent with the hypothesis that the relationship between image size and receptive field size can strongly affect model performance. We conducted additional analyses using a Gabor pyramid model to test for non-linear contributions of normalization and contrast saturation. Overall, our findings suggest that the feedforward responses of V1 neurons can be well explained by assuming only a few non-linear processing stages.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D. G. , Steiner, B. , Tucker, P. A. , Vasudevan, V. , Warden, P. , Zhang, X. (2016). TensorFlow: A system for large-scale machine learning. ArXiv.

2. Spatiotemporal energy models for the perception of motion

3. Motion selectivity and the contrast-response function of simple cells in the visual cortex

4. Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons

5. The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3