Convolutional neural network models of neuronal responses in macaque V1 reveal limited non-linear processing
Author:
Miao Hui-YuanORCID, Tong Frank
Abstract
AbstractComputational models of the primary visual cortex (V1) have suggested that V1 neurons behave like Gabor filters followed by simple non-linearities. However, recent work employing convolutional neural network (CNN) models has suggested that V1 relies on far more non-linear computations than previously thought. Specifically, unit responses in an intermediate layer of VGG-19 were found to best predict macaque V1 responses to thousands of natural and synthetic images. Here, we evaluated the hypothesis that the poor performance of lower-layer units in VGG-19 might be attributable to their small receptive field size rather than to their lack of complexityper se. We compared VGG-19 with AlexNet, which has much larger receptive fields in its lower layers. Whereas the best-performing layer of VGG-19 occurred after seven non-linear steps, the first convolutional layer of AlexNet best predicted V1 responses. Although VGG-19’s predictive accuracy was somewhat better than standard AlexNet, we found that a modified version of AlexNet could match VGG-19’s performance after only a few non-linear computations. Control analyses revealed that decreasing the size of the input images caused the best-performing layer of VGG-19 to shift to a lower layer, consistent with the hypothesis that the relationship between image size and receptive field size can strongly affect model performance. We conducted additional analyses using a Gabor pyramid model to test for non-linear contributions of normalization and contrast saturation. Overall, our findings suggest that the feedforward responses of V1 neurons can be well explained by assuming only a few non-linear processing stages.
Publisher
Cold Spring Harbor Laboratory
Reference69 articles.
1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D. G. , Steiner, B. , Tucker, P. A. , Vasudevan, V. , Warden, P. , Zhang, X. (2016). TensorFlow: A system for large-scale machine learning. ArXiv. 2. Spatiotemporal energy models for the perception of motion 3. Motion selectivity and the contrast-response function of simple cells in the visual cortex 4. Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons 5. The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks
|
|