Enhancing Fairness in Disease Prediction by Optimizing Multiple Domain Adversarial Networks

Author:

Li Bin,Shi Xinghua,Gao Hongchang,Jiang Xiaoqian,Zhang Kai,Harmanci Arif O,Malin Bradley

Abstract

Predictive models in biomedicine need to ensure equitable and reliable outcomes for the populations they are applied to. Unfortunately, biases in medical predictions can lead to unfair treatment and widening disparities, underscoring the need for effective techniques to address these issues. To enhance fairness, we introduce a framework based on a Multiple Domain Adversarial Neural Network (MDANN), which incorporates multiple adversarial components. In an MDANN, an adversarial module is applied to learn a fair pattern by negative gradients back-propagating across multiple sensitive features (i.e., characteristics of individuals that should not be used to discriminate unfairly between individuals when making predictions or decisions.) We leverage loss functions based on the Area Under the Receiver Operating Characteristic Curve (AUC) to address the class imbalance, promoting equitable classification performance for minority groups (e.g., a subset of the population that is underrepresented or disadvantaged.) Moreover, we utilize pre-trained convolutional autoencoders (CAEs) to extract deep representations of data, aiming to enhance prediction accuracy and fairness. Combining these mechanisms, we alleviate biases and disparities to provide reliable and equitable disease prediction. We empirically demonstrate that the MDANN approach leads to better accuracy and fairness in predicting disease progression using brain imaging data for Alzheimer’s Disease and Autism populations than state-of-the-art techniques.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3