Author:
Li Bin,Shi Xinghua,Gao Hongchang,Jiang Xiaoqian,Zhang Kai,Harmanci Arif O,Malin Bradley
Abstract
Predictive models in biomedicine need to ensure equitable and reliable outcomes for the populations they are applied to. Unfortunately, biases in medical predictions can lead to unfair treatment and widening disparities, underscoring the need for effective techniques to address these issues. To enhance fairness, we introduce a framework based on a Multiple Domain Adversarial Neural Network (MDANN), which incorporates multiple adversarial components. In an MDANN, an adversarial module is applied to learn a fair pattern by negative gradients back-propagating across multiple sensitive features (i.e., characteristics of individuals that should not be used to discriminate unfairly between individuals when making predictions or decisions.) We leverage loss functions based on the Area Under the Receiver Operating Characteristic Curve (AUC) to address the class imbalance, promoting equitable classification performance for minority groups (e.g., a subset of the population that is underrepresented or disadvantaged.) Moreover, we utilize pre-trained convolutional autoencoders (CAEs) to extract deep representations of data, aiming to enhance prediction accuracy and fairness. Combining these mechanisms, we alleviate biases and disparities to provide reliable and equitable disease prediction. We empirically demonstrate that the MDANN approach leads to better accuracy and fairness in predicting disease progression using brain imaging data for Alzheimer’s Disease and Autism populations than state-of-the-art techniques.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献