Abstract
AbstractThe application of machine learning algorithms to facilitate the understanding of changes in proteome states has emerged as a promising methodology in proteomics research. Unfortunately, these methods can prove difficult to interpret, as it may not be immediately obvious how models reach their predictions. We present the data processing kitchen sink (DPKS) which provides reproducible access to classic statistical methods and advanced explainable machine learning algorithms to build highly accurate and fully interpretable predictive models. In DPKS, explainable machine learning methods are used to calculate the importance of each protein towards the prediction of a model for a particular proteome state. The calculated importance of each protein can enable the identification of proteins that drive phenotypic change in a data-driven manner while classic techniques rely on arbitrary cutoffs that may exclude important features from consideration. DPKS is a free and open source Python package available athttps://github.com/InfectionMedicineProteomics/DPKS.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献