A Novel Simulation Framework for Validation of Ecological Network Inference

Author:

Kusch ErikORCID,Vinton Anna C.ORCID

Abstract

ABSTRACTUnderstanding how the differential magnitude and sign of ecological interactions vary across space is vital to assessing ecosystem resilience to biodiversity loss and predict community assemblies. This necessity for ecological network knowledge and their labour-intensive sampling requirements has spurred the creation of ecological network inference methodology. Recent research has identified inconsistencies in networks inferred using different approaches thus necessitating quantification of inference performance to facilitate choice of network inference approach.Here we develop a data simulation method to generate data products fit for network inference and subsequently quantify the validity of two well-established ecological interaction network inference methods – HMSC and COOCCUR. The simulation framework we present here can be parameterised using real-world information (e.g., biological interactions observed in-situ and bioclimatic niche preferences) thus representing network inference capabilities in real-world applications. Using this framework, it is thus possible to evaluate the performance of any ecological network inference approach.We identify a concerningly large range in accuracy of inferred networks as compared to true, realisable association networks. These differences in inference accuracy are governed by a paradigm of input data types and environmental parameter estimation as previously suggested. To establish a workflow for quantification of network inference reliability, we suggest analysis procedures with which to explore inference and detection probabilities of association types of different identity and sign with respect to bioclimatic niche preferences and association strength of association partner-species.With this study, we provide the groundwork with which to validate and compare ecological network inference methods, and ultimately vastly increase our ability to understand and predict species biodiversity across space and time.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3