A pro-inflammatory stem cell niche drives myelofibrosis through a targetable galectin 1 axis

Author:

Li Rong,Colombo MichelaORCID,Wang Guanlin,Rodriguez-Romera Antonio,O’Sullivan Jennifer,Clark Sally-Ann,Pérez Sáez Juan M.,Meng Yiran,Khan Abdullah O.,Wen Sean,Dong Pengwei,Zhou Wenjiang,Sousos Nikolaos,Murphy Lauren,Clarke Matthew,Jooss Natalie J.,Olijnik Aude-Anais,Wong Zoë C.,Karali Christina Simoglou,Sirinukunwattana Korsuk,Ryou HosukORCID,Norfo Ruggiero,Cheng Qian,Brierley Charlotte K.,Carrelha Joana,Ren Zemin,Thongjuea Supat,Rathinam Vijay A,Krishnan AnandiORCID,Royston DanielORCID,Rabinovich Gabriel A.,Mead Adam JORCID,Psaila BethanORCID

Abstract

AbstractMyeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. The majority of patients present with early-stage disease, but a substantial proportion progress to myelofibrosis and/or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and we lack therapies that reliably prevent or reverse fibrosis development. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the crosstalk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a ‘quartet’ of immune and stromal cell lineages – with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells and pro-inflammatory fibroblasts. We identified the ý-galactoside binding protein galectin 1 as a striking biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts, and as a promising therapeutic target, with reduced myeloproliferation and fibrosisin vitroandin vivoand improved survival following galectin 1 inhibition. In human bone marrow organoids, TNF increased galectin 1 expression, suggesting a feedback loop wherein the pro-inflammatory MPN clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a valuable resource for studying hematopoietic cell-niche interactions, with broad relevance for cancer-associated inflammation and disorders of tissue fibrosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3