Insights into stereoselective ring formation in canonical strigolactone: Discovery of a dirigent domain-containing enzyme catalyzing orobanchol synthesis

Author:

Homma Masato,Wakabayashi Takatoshi,Moriwaki Yoshitaka,Shiotani Nanami,Shigeta Takumi,Isobe Kazuki,Okazawa Atsushi,Ohta Daisaku,Terada Tohru,Shimizu Kentaro,Mizutani Masaharu,Takikawa Hirosato,Sugimoto Yukihiro

Abstract

AbstractStrigolactones (SLs) are plant apocarotenoids with diverse functions and structures. The widespread canonical SLs, with distinctive structural variations in their tricyclic lactone known as the ABC-ring, are classified into two types based on the C-ring configurations. The steric C-ring configuration arises during the BC-ring closure downstream of carlactonoic acid (CLA), a biosynthetic intermediate. Most plants stereoselectively produce either type of canonical SLs, e.g., tomato (Solanum lycopersicum) produces orobanchol with α-oriented C-ring. The mechanisms governing SL structural diversification are partly understood, with limited insight into the functional implications. Moreover, the precise molecular mechanism for the stereoselective BC-ring closure reaction remains unknown. Herein, we identified an enzyme called the stereoselective BC-ring-forming factor (SRF) from the dirigent protein (DIR) family, especially the DIR-f subfamily, whose biochemical function was previously unidentified, making it a pivotal enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We begin by confirming the exact catalytic function of the tomato cytochrome P450 SlCYP722C, which we previously demonstrated to be involved in the orobanchol biosynthesis [Wakabayashi et al.,Sci. Adv.5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. Subsequently, we demonstrate that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid to form orobanchol. Our approach integrates experimental and computational methods, including SRF structure prediction and molecular dynamics simulations, to propose a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for stereoselective BC-ring formation in orobanchol. The present study provides insight into the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3