Cryo-EM structures of human magnesium channel MRS2 reveal gating and regulatory mechanisms

Author:

Lai Louis Tung FaatORCID,Balaraman JayashreeORCID,Zhou FeiORCID,Matthies DoreenORCID

Abstract

AbstractMagnesium ions (Mg2+) play an essential role in cellular physiology. In mitochondria, protein and ATP synthesis and various metabolic pathways are directly regulated by Mg2+. MRS2, a magnesium channel located in the inner mitochondrial membrane, mediates the influx of Mg2+into the mitochondrial matrix and regulates Mg2+homeostasis. Knockdown of MRS2 in human cells leads to reduced uptake of Mg2+into mitochondria and disruption of the mitochondrial metabolism. Despite the importance of MRS2, the Mg2+translocation and regulation mechanisms of MRS2 are still unclear. Here, using cryo-EM we determined the structure of human MRS2 in the presence and absence of Mg2+at 2.8 Å and 3.3 Å, respectively. From the homo-pentameric structures, we identified R332 and M336 as major gating residues, which were then tested using mutagenesis and two cellular divalent ion uptake assays. A network of hydrogen bonds was found connecting the gating residue R332 to the soluble domain, potentially regulating the gate. Two Mg2+-binding sites were identified in the MRS2 soluble domain, distinct from the two sites previously reported in CorA, a homolog of MRS2 in prokaryotes. Altogether, this study provides the molecular basis for understanding the Mg2+translocation and regulatory mechanisms of MRS2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3