Mtor not Mt: Temporal variation in detection probability in spatial capture-recapture and occupancy models

Author:

Rahel Sollmann

Abstract

ABSTRACTState variables such as abundance and occurrence of species are central to many questions in ecology and conservation, but our ability to detect and enumerate species is imperfect and often varies across space and time. Accounting for imperfect and variable detection is important for obtaining unbiased estimates of state variables. Here, I investigate whether closed spatial capture-recapture (SCR) and single season occupancy models are robust to ignoring temporal variation in detection probability. Ignoring temporal variation allows collapsing detection data across repeated sampling occasions, speeding up computations, which can be important when analyzing large datasets with complex models. I simulated data under different scenarios of temporal and spatio-temporal variation in detection, analyzed data with the data-generating model and an alternative model ignoring temporal variation in detection, and compared estimates between these two models with respect to relative bias, coefficient of variation (CV) and relative root mean squared error (RMSE). SCR model estimates of abundance, the density-covariate coefficient β and the movement-related scale parameter of the detection function σ were robust to ignoring temporal variation in detection, with relative bias, CV and RMSE of the two models generally being within 4% of each other. An SCR case study for brown tree snakes showed identical estimates of density and σ under models accounting for or ignoring temporal variation in detection. Occupancy model estimates of the occupancy-covariate coefficient β and average occupancy were also largely robust to ignoring temporal variation in detection, and differences in occupancy predictions were mostly <<0.1. But there was a slight tendency for bias in β under the alternative model to increase when detection varied more strongly over time. Thus, when temporal variation in detection is extreme, it may be necessary to model that variation to avoid bias in parameter estimates in occupancy models. An occupancy case study for ten bird species with a more complex model structure showed considerable differences in occupancy parameter estimates under models accounting for or ignoring temporal variation in detection; but estimates and predictions from the latter were always within 95% confidence intervals of the former. There are cases where we cannot or may not want to ignore temporal variation in detection: a behavioral response to detection and certain SCR observation models do not allow collapsing data across sampling occasions; and temporal variation in detection may be informative of species phenology/behavior or for future study planning. But this study shows that it can be safely ignored under a range of conditions when analyzing SCR or occupancy data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3