Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure

Author:

Gregg John T.,Himes Blanca E.,Asselbergs Folkert W.,Moore Jason H.

Abstract

AbstractMotivationGenome-Wide Association Studies (GWAS) commonly assume phenotypic and genetic homogeneity that is not present in complex conditions. We designed Transformative Regression Analysis of Combined Effects (TRACE), a GWAS methodology that better accounts for clinical phenotype heterogeneity and identifies gene-by-environment (GxE) interactions. We demonstrated with UK Biobank (UKB) data that TRACE increased the variance explained in All-Cause Heart Failure (AHF) via the discovery of novel single nucleotide polymorphism (SNP) and SNP-by-environment (i.e. GxE) interaction associations. First, we transformed 312 AHF-related ICD10 codes (including AHF) into continuous low-dimensional features (i.e., latent phenotypes) for a more nuanced disease representation. Then, we ran a standard GWAS on our latent phenotypes to discover main effects and identified GxE interactions with target encoding. Genes near associated SNPs subsequently underwent enrichment analysis to explore potential functional mechanisms underlying associations. Latent phenotypes were regressed against their SNP hits and the estimated latent phenotype values were used to measure the amount of AHF variance explained.ResultsOur method identified over 100 main GWAS effects that were consistent with prior studies and hundreds of novel gene-by-smoking interactions, which collectively accounted for approximately 10% of AHF variance. This represents an improvement over traditional GWAS whose results account for a negligible proportion of AHF variance. Enrichment analyses suggested that hundreds of miRNAs mediated the SNP effect on various AHF-related biological pathways. The TRACE framework can be applied to decode the genetics of other complex diseases.AvailabilityAll code is available athttps://github.com/EpistasisLab/latent_phenotype_project

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3