The impact of climate change and natural climate variability on the global distribution ofAedes aegypti

Author:

Kaye AR,Obolski U,Sun L,Hurrell JW,Tildesley MJ,Thompson RNORCID

Abstract

AbstractAedes aegyptispread pathogens affecting humans, including the dengue, Zika and yellow fever viruses. Anthropogenic climate change is altering the spatial distribution ofAe. aegyptiand therefore the locations at risk of vector-borne disease. In addition to climate change, natural climate variability, resulting from internal atmospheric processes and interactions between climate system components (e.g. atmosphere-land, atmosphere-ocean) determines climate outcomes. However, the combined effects of climate change and natural climate variability on futureAe. aegyptispread have not been assessed fully. We developed an ecological model in whichAe. aegyptipopulation dynamics depend on climate variables (temperature and rainfall). We used 100 projections from the Community Earth System Model, a comprehensive climate model that simulates natural climate variability as well as anthropogenic climate change, in combination with our ecological model to generate a range of equally plausible scenarios describing the global distribution of suitable conditions forAe. aegyptiup to 2100. Like other studies, we project the poleward expansion ofAe. aegyptiunder climate change. However, the extent of spread varies considerably between projections, each under the same Shared Socioeconomic Pathway scenario (SSP3-7.0). For example, by 2100, climatic conditions in London may be suitable forAe. aegyptifor between one and five months in the year, depending on natural climate variability. Our results demonstrate that natural climate variability yields different possible futureAe. aegyptispread scenarios. This affects vector-borne disease risks, including the potential for some regions to experience outbreaks earlier than expected under climate change alone.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3