Timing dependent synergies between motor cortex and posterior spinal stimulation in humans

Author:

McIntosh James R.ORCID,Joiner Evan F.ORCID,Goldberg Jacob L.ORCID,Greenwald PhoebeORCID,Murray Lynda M.ORCID,Thuet EarlORCID,Modik OlegORCID,Shelkov EvgenyORCID,Lombardi Joseph M.ORCID,Sardar Zeeshan M.ORCID,Lehman Ronald A.ORCID,Chan Andrew K.ORCID,Riew K. DanielORCID,Harel Noam Y.ORCID,Virk Michael S.ORCID,Mandigo ChristopherORCID,Carmel Jason B.ORCID

Abstract

AbstractVolitional movement requires descending input from motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans it is not known whether dorsal epidural SCS targeted at the sensorimotor interface or anterior epidural SCS targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3