Author:
Cottarelli Azzurra,Shahriar Sanjid,Arac Ahmet,Glendinning Michael,Tuohy Mary Claire,Prochilo Grace,Neal Jason B.,Edinger Aimee L.,Agalliu Dritan
Abstract
SUMMARYThe stability of tight junctions (TJs) between endothelial cells (ECs) is essential to maintain blood-brain barrier (BBB) function in the healthy brain. Following ischemic stroke, TJ strand dismantlement due to protein degradation leads to BBB dysfunction, yet the mechanisms driving this process are poorly understood. Here, we show that endothelial-specific ablation of Rab7a, a small GTPase that regulates endolysosomal protein degradation, reduces stroke-induced TJ strand disassembly resulting in decreased paracellular BBB permeability and improved neuronal outcomes. Two pro-inflammatory cytokines, TNFα and IL1β, but not glucose and oxygen deprivation, induce Rab7a activation via Ccz1 in brain ECsin vitro, leading to increased TJ protein degradation and impaired paracellular barrier function. Silencing Rab7a in brain ECsin vitroreduces cytokine-driven endothelial barrier dysfunction by suppressing degradation of a key BBB TJ protein, Claudin-5. Thus, Rab7a activation by inflammatory cytokines promotes degradation of select TJ proteins leading to BBB dysfunction after ischemic stroke.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献