Abstract
Cancer is a heterogenous disease, with multiple cellular subpopulations present within a single tumour mass that differ genetically and morphologically, and thus respond differently to chemotherapeutics. Epithelial-to-Mesenchymal transition (EMT) has been shown to play a role in tumour heterogeneity. Single-cell sequencing is critical to identify cell-type-specific transcriptomic differences with multiplexing methods increasing experimental scope with reduced cost. Cell hashing with barcoded antibodies is commonly used to multiplex samples but is limited to samples expressing target antigens. Antigen-independent methods of barcoding cells, such as barcoded lipid-anchors, have gained traction but present substantial populations that cannot be unambiguously demultiplexed. Herein we report a multiplexed single-cell transfection-enabled cell hashing sequencing (scTECH-seq) platform, which uses antigen-independent endocytic uptake to barcode cells, resulting in efficient, uniform barcoding with high cell recovery. We apply this methodology to identify distinct metastable cell states in human mammary cells undergoing EMT and show that stabilisation of G-quadruplex DNA has the potential to inhibit EMT.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献