Deciphering the orthorhombic crystal structure of a novel NEIL1 nanobody with pseudo-merohedral twinning

Author:

Thompson Marlo K.ORCID,Sharma NidhiORCID,Prakash AishwaryaORCID

Abstract

AbstractNanobodies or VHHs (Variable Heavy domains of Heavy chain) are single domain antibodies that comprise three antigenic complementary determining regions (CDR). Nanobodies are used in numerous scientific applications including, bio-imaging, diagnosis, therapeutics, and macromolecular crystallography. We obtained crystals of a ∼14 kDa nanobody specific for the NEIL1 DNA glycosylase (hereafter called A5) in 0.5 M ammonium sulfate, 0.1 M sodium citrate tribasic dihydrate pH 5.6, and 1.0 M lithium sulfate monohydrate from the Crystal HT Hampton Research screen that were further optimized. Here, we describe the structure determination and refinement of the A5 crystals to a resolution of 2.1 Å. The data collected were complicated by the presence of anisotropy and twinning, and while initial space group determination pointed to a higher apparent tetragonal crystal system, the data statistics suggested twinning, placing the crystal in an orthorhombic system. Twinning was confirmed by the Padilla and Yeates test, H-test, and Britton test based on local intensity differences with a twin fraction of 0.4. Molecular replacement produced the best solution in the orthorhombic space group P21212 with four molecules in the asymmetric unit and we were able to model over 96% of the residues in the electron density with a final Rworkand Rfreeof 0.1988 and 0.2289 upon refinement.SynopsisThe crystal structure of a specific nanobody against NEIL1 was determined to 2.1 Å. The structure was ultimately solved in an orthorhombic space group after diffraction data analysis revealed mild anisotropy as well as pseudo-merohedral twinning

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3