Abstract
AbstractZebrafish has a remarkable and lifelong ability for cardiac regeneration after severe damage, whereas mammals lose their innate capacity for heart regeneration during early postnatal development. This study aimed to investigate whether the decreased production of growth factors during postnatal mammalian development contributes to the exit of cardiomyocytes from the cell cycle and the reduction in cardiac regenerative ability.We identified growth factors with declining expression levels during early postnatal life in the mouse model and assessed the pro-proliferative ability of these factors on neonatal murine primary cardiomyocytesin vitro. Our findings confirmed the previously reported pro-proliferative effects of NRG1, IL1b, RANKL, IGF2 and IL6, while also identifying novel potential pro-regenerative growth factors. Among them, BMP7 exhibited the most pronounced efficacy.Bmp7 knockdown interfered with the proliferation of neonatal mouse cardiomyocytes in culture and adult bmp7 mutant zebrafish displayed reduced cardiomyocyte proliferation during heart regeneration, indicating that Bmp7 is crucial for cardiomyocyte proliferation in the regenerative stages of mouse and zebrafish hearts. Conversely,bmp7overexpression was sufficient to boost cardiomyocyte cycling in regenerating zebrafish hearts, while BMP7 administration stimulated mouse cardiomyocyte cycling at postnatal-day-7, when cardiomyocytes ceased to proliferate, and enhanced cardiomyocyte regenerationin vivoin adult mice following myocardial infarction.Mechanistically, BMP7-induced proliferation was mediated by type I BMP receptors BMPR1A and ACVR1, and type II receptors ACVR2A and BMPR2. Downstream signalling involved SMAD5, ERK and AKT.In conclusion, the administration of BMP7 holds promise as a strategy to stimulate heart regeneration following cardiac injury.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献