SpyCombinator Assembly of Bispecific Binders

Author:

Driscoll Claudia L.ORCID,Keeble Anthony H.ORCID,Howarth MarkORCID

Abstract

ABSTRACTBispecific antibodies are a successful and expanding therapeutic class, bridging two cell-types or engaging two different molecules on the same cell. Bispecifics unlock avenues towards synergy, resistance evasion, and signaling bias. Standard approaches to generate bispecifics are complicated by the need for disulfide reduction/oxidation or cloning of each binder molecule in two different formats. Here we present a modular approach to bispecifics using SpyTag/SpyCatcher spontaneous amidation, where all binders are cloned in the same format, bearing a SpyTag. Two SpyTag-fused antigen-binding modules can be precisely conjugated onto DoubleCatcher, a tandem SpyCatcher where the second Catcher is unreactive until unveiling of reactivity using site-specific protease. Assembly on DoubleCatcher is efficient in phosphate-buffered saline at 37 °C, with half-times less than 5 min for both SpyCatcher arms and over 97% bispecific homogeneity. We engineer a panel of DoubleCatchers, locked through disulfide bonds to direct binders to project in different directions from the hub. We establish a generalized methodology for one-pot assembly and purification of bispecifics in 96-well plate format. A panel of Fab, affibody or nanobody binders recognizing different sites on HER2 were coupled to DoubleCatcher, revealing unexpected combinations with anti-proliferative or pro-proliferative activity on HER2-addicted cancer cells. Bispecific activity depended sensitively on both the order of the binders within the assembly and the geometry of DoubleCatcher scaffolds. These findings support the need for straightforward assembly in different formats. SpyCombinator provides a simple and scalable tool to discover synergy in bispecific activity, through modulating receptor organization and geometry.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3