Engineering of a graphene oxide-based two-dimensional platform for immune activation and modulation

Author:

Despotopoulou DespoinaORCID,Stylianou Maria,Arellano Luis Miguel,Kisby ThomasORCID,Lozano NeusORCID,Kostarelos KostasORCID

Abstract

AbstractNanoscale-based tools for immunomodulation are expected to offer a rich battery of options for more targeted and safer approaches to achieve clinically effective manipulation of the local and systemic immune environment. In this study, we aimed to design nanoscale constructs based on graphene oxide (GO) nanosheets as platform carriers for the TLR7/8 agonist Resiquimod (R848). The non-covalent complexation of R848 molecules on the GO surface resulted in stable complexes by preserving their biological activity. The physicochemical properties, molecular quantification, as well as the overall performance of the complex were systematically investigated. We hypothesized the formation of GO:drug nano-constructs with strong colloidal stability over time, due to the strong π-π interactions between the R848 molecules and the GO surface, and identified that R848 loading efficiency consistently ranged around 75% (of starting molecules), quantified by HPLC and UV-Vis. The 2D morphology of the thin nanosheets was retained after complexation, determined by various (AFM and SEM) microscopic techniques. Based on the surface physicochemical characterization of the complexes by Raman, FTIR, XPS, and XRD, the formation of non-covalent interactions among the GO surface and the R848 molecules was confirmed. Most importantly, GO:R848 complexes did not compromise the biological activity of R848, and effectively activated macrophagesin vitro. Collectively, this study demonstrates that thin GO sheets can act as platforms for the non-covalent association with small TLR7/8 agonist molecules, forming stable and highly reproducible complexes, that could be exploited as effective immunomodulatory agents.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3