LPATH: A semi-automated Python tool for clustering molecular pathways

Author:

Bogetti Anthony T.ORCID,Leung Jeremy M. G.ORCID,Chong Lillian T.ORCID

Abstract

AbstractThe pathways by which a molecular process transitions to a target state are highly sought-after as direct views of a transition mechanism. While great strides have been made in the physics-based simulation of such pathways, the analysis of these pathways can be a major challenge due to their diversity and variable lengths. Here we present the LPATH Python tool, which implements a semi-automated method for linguistics-assisted clustering of pathways into distinct classes (or routes). This method involves three steps: 1) discretizing the configurational space into key states, 2) extracting a text-string sequence of key visited states for each pathway, and 3) pairwise matching of pathways based on a text-string similarity score. To circumvent the prohibitive memory requirements of the first step, we have implemented a general two-stage method for clustering conformational states that exploits machine learning. LPATH is primarily designed for use with the WESTPA software for weighted ensemble simulations; however, the tool can also be applied to conventional simulations. As demonstrated for the C7eqto C7axconformational transition of alanine dipeptide, LPATH provides physically reasonable classes of pathways and corresponding probabilities.TOC Graphic

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3