Abstract
ABSTRACTUpregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP) (Clark et al., 2013; Empl et al., 2001; Ji et al., 2018; Lindenlaub and Sommer, 2003). To test the hypothesis that supraspinal circuitry is critical to pain chronification, we studied the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex+ neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that following chronic constriction injury (CCI), pain resolves in males; however, female acute pain transitions to chronic. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38αMAPK and NF-κB activation in male cortical tissue; however, p38αMAPK phosphorylation was reduced in NexCreERT2::TNFR1f/fmales. We observed similar behavioral results following CCI in NexCreERT2::p38αMAPKf/fmice. Previously, we established estrogen’s ability to modulate sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP (Bouhassira et al., 2008; Claiborne et al., 2006; de Mos et al., 2007; Del Rivero et al., 2019; Li et al., 2009). To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor β (ER β) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lend “male-like” therapeutic relief to females following CCI. These data suggest that TNFR1/p38αMAPK signaling in Nex+ neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER β interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.
Publisher
Cold Spring Harbor Laboratory