Author:
Luciani Marco,Garsia Chiara,Beretta Stefano,Petiti Luca,Peano Clelia,Merelli Ivan,Cifola Ingrid,Miccio Annarita,Meneghini Vasco,Gritti Angela
Abstract
ABSTRACTHuman induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) are a promising source for cell therapy approaches to treat neurodegenerative and demyelinating disorders. Despite ongoing efforts to characterize hiPSC-derived cellsin vitroandin vivo, we lack comprehensive genome- and transcriptome-wide studies addressing hiPSC-NSC identity and safety, which are critical for establishing accepted criteria for prospective clinical applications.Here, we evaluated the transcriptional and epigenetic signatures of hiPSCs and differentiated hiPSC-NSC progeny, finding that the hiPSC-to-NSC transition results in a complete loss of pluripotency and the acquisition of a radial glia-associated transcriptional signature. Importantly, hiPSC-NSCs share with somatic human fetal NSCs (hfNSCs) the main transcriptional and epigenetic patterns associated with NSC-specific biology.In vivo, long-term observation (up to 10 months) of mice intracerebrally transplanted as neonates with hiPSC-NSCs showed robust engraftment and widespread distribution of human cells in the host brain parenchyma. Engrafted hiPSC-NSCs displayed multilineage potential and preferentially generated glial cells. No hyperproliferation, tumor formation, or expression of pluripotency markers was observed. Finally, we identified a novel role of the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) in the regulation of astroglial commitment of hiPSC-NSCs.Overall, these comprehensivein vitroandin vivoanalyses provide transcriptional and epigenetic reference datasets to define the maturation stage of NSCs derived from different hiPSC sources, and to clarify the safety profile of hiPSC-NSCs, supporting their continuing development as an alternative to somatic hfNSCs in treating neurodegenerative and demyelinating disorders.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献