In silico thermodynamic evaluation of the effectiveness of RT-LAMP primers to SARS-CoV-2 variants detection

Author:

Miranda PâmellaORCID,Alves Pedro A.,do Monte-Neto Rubens L.,Weber Gerald

Abstract

AbstractViral mutations are the primary cause of mismatches in primer-target hybridisation, affecting the sensibility of molecular techniques, potentially leading to detection dropouts. Despite its importance, little is known about the quantitative effect of mismatches in primer-target hybridisation. We use up-to-date and highly detailed thermodynamic model parameters of DNA mismatches to evaluate the sensibility to variants of SARS-CoV-2 RT-LAMP primers. We aligned 18 RT-LAMP primer sets, which were underwent clinical validation, to the genomes of Wuhan strain (ws), 7 variants and 4 subvariants, and calculated hybridisation temperatures allowing up to three consecutive mismatches. We calculate the coverage when the mismatched melting temperature falls by more than 5°C in comparison to the matched alignments. If no mismatches are considered, the average coverage found would be 94% for ws, falling the lowest value for Omicron: 84%. However, considering mismatches the coverage is much higher: 97% (ws) to 88% (Omicron). Stabilizing mismatches (higher melting temperatures), account for roughly 1/3 of this increase. The number of primer dropouts increases for new each variant, however the effect is much less severe if mismatches are considered. We suggest using melting temperature calculations to continuously assess the trend of primer dropouts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3