Abstract
AbstractNatural variation can provide important insights into the genetic and environmental factors that shape social behavior and its evolution. The sweat bee,Lasioglossum baleicum, is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioral variation, we generated ade novogenome assembly forL. baleicum, and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage-matched pupae from warmer, social-biased sites compared to cooler, solitary-biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviors inL. baleicum. Together, our results help to characterize the molecular mechanisms shaping variation in social behavior and highlight a potential role of environmental tuning during development as a factor shaping adult behavior and physiology in this socially flexible bee.
Publisher
Cold Spring Harbor Laboratory
Reference79 articles.
1. Alexa, A. , & Rahnenführer, J. (2007). Gene set enrichment analysis with topGO. Retrieved from http://www.mpi-sb.mpg.de/∼alexa
2. NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance;Molecular Psychiatry,2021
3. Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster
4. Born to be bee, fed to be worker? The caste system of a primitively eusocial insect;Frontiers in Zoology,2012