Overexpressing the IPT gene improves drought tolerance and nutritional value of tropical maize (Zea maysL.)

Author:

Muruo Rose MweruORCID,Nchore Shem B.,Oduor Richard O.,Ngugi Mathew Piero

Abstract

AbstractDrought stress poses a significant threat to crop productivity, making the development of drought-tolerant crops a priority. The impact of drought on grain yield loss varies significantly, ranging from 10% to 76%, depending on the specific stage of occurrence and the severity of the drought. In this study, we investigated the effects of introducing the pSARK::IPT transgene on the drought tolerance and nutritional composition of successive generations of tropical maize. Towards this goal, we screened different generations of maize plants by genotyping PCR, exposed them to long term drought stress and analysed several drought stress markers and nutritional profiles of the plants. Our results demonstrated that the pSARK::IPT transgene was present in 4 successive generations of maize plants. Under drought conditions, transgenic maize exhibited higher relative water content, and delayed senescence compared to wild-type plants. Additionally, transgenic plants showed increased levels of total chlorophyll, chlorophyll a, and chlorophyll b, indicating improved photosynthetic activity under water deficit. Our study also showed that IPT-transgenic plants produced substantially higher yields and demonstrated enhanced nutritional value compared to wildtype plants when grown under well-watered conditions. Further research is warranted to investigate the underlying molecular mechanisms involved in these improvements and assess the performance of pSARK::IPT maize under field conditions.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. The genetics of maize evolution;Annual Review of Genetics. Annual Reviews,2004

2. Byakod M. Evaluation of maize genotypes for moisture stress condition. 2017.

3. Molecular approaches towards analyzing the viruses infecting maize (Zea mays L;J Gen Mol Virol,2011

4. Global maize production, utilization, and consumption

5. Returns to food and agricultural R&D investments in Sub-Saharan Africa, 1975–2014;Food Policy,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3