Abstract
AbstractIt has been presumed that rheumatoid arthritis (RA) joint pain is related to inflammation in the synovium; however, recent studies reveal that pain scores in patients do not correlate with synovial inflammation. We identified a module of 815 genes associated with pain, using a novel machine learning approach, Graph-based Gene expression Module Identification (GbGMI), in samples from patients with longstanding RA, but limited synovial inflammation at arthroplasty, and validated this finding in an independent cohort of synovial biopsy samples from early, untreated RA patients. Single-cell RNA-seq analyses indicated these genes were most robustly expressed by lining layer fibroblasts and receptor-ligand interaction analysis predicted robust lining layer fibroblast crosstalk with pain sensitive CGRP+ dorsal root ganglion sensory neurons. Netrin-4, which is abundantly expressed by lining fibroblasts and associated with pain, significantly increased the branching of pain-sensitive CGRP+ neuronsin vitro. We conclude GbGMI is a useful method for identifying a module of genes that associate with a clinical feature of interest. Using this approach, we find that Netrin-4 is produced by synovial fibroblasts in the absence of inflammation and can enhance the outgrowth of CGRP+ pain sensitive nerve fibers.One Sentence SummaryMachine Learning reveals synovial fibroblast genes related to pain affect sensory nerve growth in Rheumatoid Arthritis addresses unmet clinical need.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献