GalNAc-siRNA Mediated Knockdown of Ketohexokinase Versus Systemic, Small Molecule Inhibition of its Kinase Activity Exert Divergent Effects on Hepatic Metabolism in Mice on a HFD

Author:

Park Se-Hyung,Fadhul Taghreed,Conroy Lindsey R.,Clarke Harrison,Sun Ramon C.ORCID,Wallenius Kristina,Boucher Jeremie,O’Mahony Gavin,Boianelli Alessandro,Persson Marie,Martinez Genesee J.,Hinds Terry D.,Divanovic Senad,Softic Samir

Abstract

SUMMARYConsumption of diets high in sugar and fat are well-established risk factors for the development of obesity and its metabolic complications, including non-alcoholic fatty liver disease. Metabolic dysfunction associated with sugar intake is dependent on fructose metabolism via ketohexokinase (KHK). Here, we compared the effects of systemic, small molecule inhibition of KHK enzymatic activity to hepatocyte-specific, GalNAc-siRNA mediated knockdown of KHK in mice on a HFD. Both modalities led to an improvement in liver steatosis, however, via substantially different mechanisms. KHK knockdown profoundly decreased lipogenesis, while the inhibitor increased the fatty acid oxidation pathway. Moreover, hepatocyte-specific KHK knockdown completely prevented hepatic fructose metabolism and improved glucose tolerance. Conversely, KHK inhibitor only partially reduced fructose metabolism, but it also decreased downstream triokinase. This led to the accumulation of fructose-1 phosphate, resulting in glycogen accumulation, hepatomegaly, and impaired glucose tolerance. In summary, KHK profoundly impacts hepatic metabolism, likely via both kinase-dependent and independent mechanisms.HIGHLIGHTSKHK knockdown or inhibition of its kinase activity differently target hepatic metabolism.KHK inhibitor increases F1P and glycogen accumulation as it also lowers triokinase.KHK knockdown completely prevents hepatic fructose metabolism and lipogenesis.E of wild type, but not mutant, kinase dead KHK-C increases glycogen accumulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3