How will COVID-19 persist in the future? Simulating future dynamics of COVID-19 using an agent-based network model

Author:

Roubenoff EthanORCID

Abstract

AbstractDespite the United States Center for Disease Control (CDC)’s May 2023 expiration of the declared public health emergency pertaining to the COVID-19 pandemic (Silk 2023), approximately 3 years after the first cases of SARS-CoV-2 appeared in the United Sates, thousands of new cases persist daily. Many questions persist about the future dynamics of SARS-CoV-2’s in the United States, including: will COVID continue to circulate as a seasonal disease like influenza, and will annual vaccinations be required to prevent outbreaks? In response, we present an Agent Based Networked Simulation of COVID-19 transmission to evaluate recurrent future outbreaks of the disease, accounting for contact heterogeneity and waning vaccine-derived and natural immunity. Our model is parameterized with data collected as part of the Berkeley Interpersonal Contact Survey (BICS; Feehan and Mahmud 2021) and is used to simulate time series of confirmed cases of and deaths due to SARS-CoV-2, paying special attention to seasonal forces and waning immunity (Kronfeld-Schor et al. 2021; X. Liu et al. 2021; Nichols et al. 2021). From the BICS ABM model we simulate SARS-CoV-2 dynamics over the 10-year period beginning in 2021 with waning immunity and inclusion of annual booster doses under a variety of transmission scenarios. We find that SARS-CoV-2 outbreaks are likely to occur frequently, and that distribution of booster doses during certain times of the year—notably in the late winter/early spring—may reduce the severity of a wintertime outbreak depending on the seasonal epidemiology of the pathogen.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3