Abstract
Neuronal swelling after excitotoxic insults is implicated in neuronal injury and death in the developing brain, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated. Using multiphoton Ca2+imaging in vivo (P12-17) and in acute brain slices (P8-12), we explored Ca2+-dependent downstream effects after neuronal cytotoxic edema. We observed the translocation of cytosolic GCaMP6s into the nucleus of a subpopulation of neurons minutes after various excitotoxic insults. We used automated morphology-detection algorithms for neuronal segmentation and quantified the nuclear translocation of GCaMP6s as the ratio of nuclear and cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios were correlated to higher Ca2+loads and could occur independently of neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with increased nuclear pore size. Inhibiting calpains prevented elevated N/C ratios and neuronal swelling. Thus, our results indicate altered nuclear transport in a subpopulation of neurons shortly after injury in the developing brain, which can be used as an early biomarker of acute neuronal injury.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献