Increasing NPYergic transmission in the hippocampus rescues aging-related deficits of long-term potentiation in the mouse dentate gyrus

Author:

Klinger KatharinaORCID,del Ángel MiguelORCID,Çalışkan GürselORCID,Stork OliverORCID

Abstract

ABSTRACTLoss of neuropeptide Y (NPY)-expressing interneurons in the hippocampus and decaying cholinergic neuromodulation are thought to contribute to impaired cognitive function during aging. However, the interaction of these two neuromodulatory systems in maintaining hippocampal synaptic plasticity during healthy aging has not been explored so far. Here we report profound sex differences in the Neuropeptide-Y (NPY) levels in the dorsal dentate gyrus (DG) with higher NPY concentrations in the male mice compared to their female counterparts and a reduction of NPY levels during aging specifically in males. This change in aged males is accompanied by a deficit in theta burst-induced long-term potentiation (LTP) in the medial perforant path-to-dorsal DG (MPP-DG) synapse, which can be rescued by enhancing cholinergic activation with the acetylcholine esterase blocker, physostigmine. Importantly, NPYergic transmission is required for this rescue of LTP. Moreover, exogenous NPY application alone is sufficient to recover LTP induction in aged male mice, even in the absence of the cholinergic stimulator. Together, our results suggest that in male mice NPYergic neurotransmission is a critical factor for maintaining dorsal DG LTP during aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3