Population genomics reveals complex patterns of immune gene evolution in monarch butterflies (Danaus plexippus)

Author:

Tan Wen-Hao,Mongue Andrew J.,de Roode Jacobus C.,Gerardo Nicole M.,Walters James R.

Abstract

ABSTRACTImmune genes presumably rapidly evolve as pathogens exert strong selection pressures on host defense, but the evolution of immune genes is also constrained by trade-offs with other biological functions and shaped by the environmental context. Thus, immune genes may exhibit complex evolutionary patterns, particularly when organisms disperse to or live in variable environments. We examined the evolutionary patterns of the full set of known canonical immune genes within and among populations of monarch butterflies (Danaus plexippus), and relative to a closely related species (D. gilippus). Monarchs represent a system with a known evolutionary history, in which North American monarchs dispersed to form novel populations across the world, providing an opportunity to explore the evolution of immunity in the light of population expansion into novel environments. By analyzing a whole-genome resequencing dataset across populations, we found that immune genes as a whole do not exhibit consistent patterns of selection, differentiation, or genetic variation, but that patterns are specific to functional classes. Species comparisons between D. plexippus and D. gilippus and analyses of monarch populations both revealed consistently low levels of genetic variation in signaling genes, suggesting conservation of these genes over evolutionary time. Modulation genes showed the opposite pattern, with signatures of relaxed selection across populations. In contrast, recognition and effector genes exhibited less consistent patterns. When focusing on genes with exceptionally strong signatures of selection or differentiation, we also found population-specific patterns, consistent with the hypothesis that monarch populations do not face uniform selection pressures with respect to immune function.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Ackery, P. R. , & Vane-Wright, R. I. (1984). Milkweed butterflies: their cladistics and biology. Ithaca, NY: Cornell University Presss.

2. Altizer, S. , & de Roode, J. C. (2015). Monarchs and their debilitating parasites: immunity, migration, and medicinal plant use. In. Monarchs in a Changing World.

3. Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico

4. Monarch butterfly migration and parasite transmission in eastern North America

5. Adaptive Evolution Is Substantially Impeded by Hill–Robertson Interference inDrosophila

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3