Comprehensive genomic analysis reveals dynamic evolution of endogenous retroviruses that code for retroviral-like protein domains

Author:

Ueda Mahoko TakahashiORCID,Kryukov Kirill,Mitsuhashi Satomi,Mitsuhashi HiroakiORCID,Imanishi TadashiORCID,Nakagawa SoORCID

Abstract

AbstractEndogenous retroviruses (ERVs) are remnants of ancient retroviral infections of mammalian germline cells. A large proportion of ERVs lose their open reading frames (ORFs), while others retain them and become exapted by the host species. However, it remains unclear what proportion of ERVs possess ORFs (ERV-ORFs), become transcribed, and serve as candidates for co-opted genes. Hence, we investigated characteristics of 176,401 ERV-ORFs containing retroviral-like protein domains (gag, pro, pol, and env) in 19 mammalian genomes. The fractions of ERVs possessing ORFs were overall small (∼0.15%) although they varied depending on domain types as well as species. The observed divergence of ERV-ORF from their consensus sequences suggested that a large proportion of ERV-ORFs either recently or anciently inserted themselves into mammalian genomes. Alternatively, very few ERVs lacking ORFs were found to exhibit similar divergence patterns. To identify ERV-ORFs transcribed as proteins, we compared ERV-ORFs with various multi-omics data including transcriptome data, trimethylation at histone H3 lysine 36, and transcription initiation sites from 2,834 cell types, and found 408 and 752 ERV-ORFs, accounting for 2-3% of all ERV-ORFs, with high transcriptional potential in humans and mice, respectively. Moreover, many of these ERV-ORFs with transcriptional potential were lineage-specific sequences exhibiting tissue-specific expression. These results suggest a possibility for the expression of uncharacterized functional genes containing ERV-ORFs hidden within mammalian genomes. Together, our analyses suggest that more ERV-ORFs may be co-opted in a host-species specific manner than we currently know, which are likely to have contributed to mammalian evolution and diversification.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3