Trisk 95 as a Novel Skin Mirror for Normal and Diabetic Systemic Glucose Level

Author:

Ali NsreinORCID,Rezvani Hamid Reza,Motei Diana,Suleman Sufyan,Mahfouf Walid,Marty Isabelle,Ronkainen Veli-Pekka,Vainio Seppo J.

Abstract

AbstractCoping with diabetes requires frequent and even today mostly invasive blood glucose-based monitoring. Partly due to this invasive nature and the associated reduced skin wound healing and increased risk of infection, non-invasive glucose monitoring technologies would represent considerable progress. Edited keratinocytes may enable such a function.To address this hypothesis, we conducted a proteomic screen in the skin by making use of the experimental in vivo mouse model of type I diabetes alongside controls. We identified Trisk 95 as the only protein whose expression is induced in response to high blood glucose. A luciferase reporter assay demonstrated that induction of Trisk 95 expression occurs not only at the protein level but also transcriptionally. This induction was associated with a marked elevation in the Fluo-4 signal, suggesting a role for intracellular calcium changes in the signalling cascade. Strikingly, these changes lead concurrently to fragmentation of the mitochondria. As judged from the knockout findings, both the calcium flux and the mitochondrial phenotype were dependent on Trisk 95 function, since the phenotypes in question were abolished.The data demonstrate that the skin represents an organ that reacts robustly and thus mirrors changes in systemic blood glucose levels. The findings are also consistent with a channelling model of Trisk 95 that serves as an insulin-independent but glucose-responsive biomarker taking part in releasing calcium from the cellular stores in the skin. The skin cells may thus provide a novel mean for glucose monitoring when analysing changes in labelled Trisk 95 and calcium. By that, this study is the first proof of the concept of our registered patent (No. PCT FI2016/050917), which proposes the use of cells as biosensors for developing personalized health-monitoring devices.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3