Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice.

Author:

Gerlai R,Wojtowicz J M,Marks A,Roder J

Abstract

Recent evidence suggests that slowly propagating Ca2+ waves from astrocytes can modulate the function of neurons. Altering astrocytic calcium processes in vivo may therefore affect neuronal and behavioral phenotypes. Previously, we generated transgenic mice that overexpress an astrocytic calcium-binding protein, S100 beta. Immunocytochemistry and in situ hybridization showed elevated expression in the astrocytes of the hippocampus and other brain regions. Neurons in the hippocampus were negative for S100 beta. In this paper we analyze the hippocampal electrophysiology and learning properties of mice from two transgenic lines. Significant differences were found between the hippocampal slices of normal and transgenic mice in their response to high frequency (100 Hz) stimulation. The overall distribution of post-tetanic excitatory postsynaptic potentials (EPSP) of the slices from the transgenic mice was shifted significantly toward smaller values to a degree that 25% of slices exhibited depression. The altered hippocampal neurophysiology was accompanied by an impairment in a hippocampal-dependent learning task. Transgenic mice showed significant impairment in a spatial version of the Morris water maze, however, they performed normally in non-spatial tasks. Probe trials showed that transgenic mice, though significantly impaired, also acquired spatial information. The results suggested that the impairment was not due to motor dysfunction, impaired vision or motivation of the transgenic mice, findings compatible with a possible hippocampal mechanism. We conclude that overexpression of S100 beta in astrocytes impairs, but does not abolish, the ability to solve a spatial task, and it leads to a significantly decreased post-tetanic potentiation in the hippocampal slice. We hypothesize that the changes are due to calcium mediated processes. Our results support the notion that astrocytes are involved in higher brain functions.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Reference42 articles.

1. PKCγ mutant mice exhibit mild deficits in spatial and contextual learning

2. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice

3. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation.;Trends Neurosci.,1993

4. S100β stimulates calcium fluxes in glial and neuronal cells.;J. Biol. Chem.,1992

5. New roles for glia.;J. Neurosci.,1991

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3