Molecular evolution across developmental time reveals rapid divergence in early embryogenesis

Author:

Cutter Asher D.,Garrett Rose H.,Mark Stephanie,Wang Wei,Sun Lei

Abstract

AbstractOntogenetic development hinges on the changes in gene expression in time and space within an organism, suggesting that the demands of ontogenetic growth can impose or reveal predictable pattern in the molecular evolution of genes expressed dynamically across development. Here we characterize co-expression modules of the C. elegans transcriptome, using a time series of 30 points from early-embryo to adult. By capturing the functional form of expression profiles with quantitative metrics, we find fastest evolution in the distinctive set of genes with transcript abundance that declines through development from a peak in young embryos. These genes are highly enriched for oogenic function (maternal provisioning), are non-randomly distributed in the genome, and correspond to a life stage especially prone to inviability in inter-species hybrids. These observations conflict with the “early conservation model” for the evolution of development, though expression-weighted sequence divergence analysis provides some support for the “hourglass model.” Genes in co-expression modules that peak toward adulthood also evolve fast, being hyper-enriched for roles in spermatogenesis, implicating a history of sexual selection and relaxation of selection on sperm as key factors driving rapid change to ontogenetically distinguishable co-expression modules of genes. We propose that these predictable trends of molecular evolution for dynamically-expressed genes across ontogeny predispose particular life stages, early embryogenesis in particular, to hybrid dysfunction in the speciation process.Impact SummaryThe development of an organism from a single-celled embryo to a reproductive adult depends on dynamic gene expression over developmental time, with natural selection capable of shaping the molecular evolution of those differentially-expressed genes in distinct ways. We quantitatively analyzed the dynamic transcriptome profiles across 30 timepoints in development for the nematode C. elegans. In addition to rapid evolution of adult-expressed genes with functional roles in sperm, we uncovered the unexpected result that the distinctive set of genes that evolve fastest are those with peak expression in young embryos, conflicting with some models of the evolution of development. The rapid molecular evolution of genes in early embryogenesis contrasts with the exceptional conservation of embryonic cell lineages between species, and corresponds to a developmental period that is especially sensitive to inviability in inter-species hybrid embryos. We propose that these predictable trends of molecular evolution for dynamically-expressed genes across development predispose particular life stages, early embryogenesis in particular, to hybrid dysfunction in the speciation process.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. Tissue enrichment analysis for C. elegans genomics

2. Angeles-Albores, D. , R. Y. N. Lee , J. Chan , and P. W. Sternberg . 2018. Two new functions in the WormBase Enrichment Suite. microPublication Biology:https://doi.org/10.17912/W17925Q17912N.

3. Arthur, W. 2015. Internal Factors in Evolution: The Morphogenetic Tree, Developmental Bias, and Some Thoughts on the Conceptual Structure of Evo-devo. Pp. 343–363 in C. A. Love , ed. Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development. Springer Netherlands, Dordrecht.

4. Artieri, C. G. , W. Haerty , and R. S. Singh . 2009. Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila. BMC Biol. 7.

5. Pollen-Specific, but Not Sperm-Specific, Genes Show Stronger Purifying Selection and Higher Rates of Positive Selection Than Sporophytic Genes in Capsella grandiflora

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3