Violating the normality assumption may be the lesser of two evils

Author:

Knief UlrichORCID,Forstmeier WolfgangORCID

Abstract

AbstractWhen data are not normally distributed (e.g. skewed, zero-inflated, binomial, or count data) researchers are often uncertain whether it may be legitimate to use tests that assume Gaussian errors (e.g. regression, t-test, ANOVA, Gaussian mixed models), or whether one has to either model a more specific error structure or use randomization techniques.Here we use Monte Carlo simulations to explore the pros and cons of fitting Gaussian models to non-normal data in terms of risk of type I error, power and utility for parameter estimation.We find that Gaussian models are remarkably robust to non-normality over a wide range of conditions, meaning that P-values remain fairly reliable except for data with influential outliers judged at strict alpha levels. Gaussian models also perform well in terms of power and they can be useful for parameter estimation but usually not for extrapolation. Transformation of data before analysis is often advisable and visual inspection for outliers and heteroscedasticity is important for assessment. In strong contrast, some non-Gaussian models and randomization techniques bear a range of risks that are often insufficiently known. High rates of false-positive conclusions can arise for instance when overdispersion in count data is not controlled appropriately or when randomization procedures ignore existing non-independencies in the data.Overall, we argue that violating the normality assumption bears risks that are limited and manageable, while several more sophisticated approaches are relatively error prone and difficult to check during peer review. Hence, as long as scientists and reviewers are not fully aware of the risks, science might benefit from preferentially trusting Gaussian mixed models in which random effects account for non-independencies in the data in a transparent way.Tweetable abstractGaussian models are remarkably robust to even dramatic violations of the normality assumption.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3