Abstract
AbstractWestern corn rootworm (Diabrotica virgifera virgifera LeConte) is a serious pest of maize (Zea mays L.) in North America and parts of Europe. With most of its life cycle spent in the soil feeding on maize root tissues, this insect is likely to encounter and interact with a wide range of soil and rhizosphere microbes. Our knowledge of the role of microbes in pest management and plant health remains incomplete. An important component of an effective pest management strategy is to know which microorganisms are present that could play a role in life history or management. For this study, insects were reared in soils from different locations. Insects were sampled at each life stage to determine the possible core bacteriome. Additionally, soil was sampled at each life stage and resulting bacteria were identified to determine the contribution of soil to the rootworm bacteriome, if any. We analyzed the V4 hypervariable region of bacterial 16S rRNA genes with Illumina MiSeq to survey the different species of bacteria associated with the insects and the soils. The bacterial community associated with insects was significantly different from that in the soil. Some differences appear to exist between insects from non-diapausing and diapausing colonies while no significant differences in community composition existed between the insects reared on different soils. Despite differences in the bacteria present in immature stages and in male and female adults, there is a possible core bacteriome of approximately 16 operational taxonomic units (i.e., present across all life stages). This research may give insights into how resistance to Bt develops, improved nutrition in artificial rearing systems, and new management strategies.
Publisher
Cold Spring Harbor Laboratory