Abstract
AbstractNon-target impacts of insecticide treatments are a major public and environmental concern, particularly in contemporary beekeeping. Therefore, it is important to understand the physiological mechanisms contributing to insecticide sensitivity in honey bees. In the present studies, we sought to evaluate the role of esterases as the source of variation in insecticide sensitivity. To address this question, the following objectives were completed: 1) Evaluated esterase activity among honey bee stocks, 2) Assessed the correlation of esterase activity with changes in insecticide sensitivity with honey bee age, 3) Established if esterases can be used as a biomarker of insecticide exposure, and 4) Examined the effects of Varroa mite infestation and viral infection on esterase activity.Results indicated that honey bees have a dynamic esterase capacity that is influenced by genetic stock and age. However, there was no consistent connection of esterase activity with insecticide sensitivity across genetic stocks or with age, suggests other factors are more critical for determining insecticide sensitivity. The trend of increased esterase activity with age in honey bees suggests this physiological transition is consistent with enhanced metabolic rate with age. The esterase inhibition with naled but not phenothrin or clothianidin indicates that reduced esterase activity levels may only be reliable for sublethal doses of organophosphate insecticides. The observation that viral infection, but not Varroa mite infestation, reduced esterase activity shows viruses have extensive physiological impacts. Taken together, these data suggest that honey bee esterase activity toward these model substrates may not correlate well with insecticide sensitivity. Future studies include identification of esterase substrates and inhibitors that are better surrogates of insecticide detoxification in honey bees as well as investigation on the usefulness of esterase activity as a biomarker of pesticide exposure, and viral infection.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献