Sensorimotor Memory for Object Weight is Based on Previous Experience During Lifting, Not Holding

Author:

van Polanen VonneORCID,Davare MarcoORCID

Abstract

ABSTRACTTo allow skilled object manipulation, the brain must generate a motor command specifically tailored to the object properties. For instance, in object lifting, the forces applied by the fingertips must be scaled to the object’s weight. When lifting a series of objects, forces are usually scaled according to recent experience from previously lifted objects, an effect often referred to as sensorimotor memory. In this study, we investigated the specific time period during which stored information from previous object manipulation is used to mediate sensorimotor memory. More specifically, we examined whether sensorimotor memory was based on weight information obtained between object contact and lift completion (lifting phase) or during stable holding (holding phase). Participants lifted objects in virtual reality that could increase or decrease in weight after the object was lifted and held in the air. In this way, we could distinguish whether the force planning in the next lift was scaled depending on weight information gathered from either the dynamic lifting or static holding period. We found that force planning was based on the previous object weight experienced during the lifting, but not holding, phase. This suggest that the lifting phase, while merely lasting a few hundred milliseconds, is a key time period for building up internal object representations used for planning future hand-object interactions.HIGHLIGHTSWhen lifting objects, fingertip force scaling is based on the most recent liftWe investigated what time period is critical for acquiring sensorimotor memorySensorimotor memory is based on weight experienced during previous lift, not holdThe lifting phase is a key period for building up internal models of object lifting

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3