Mechanics of allostery: contrasting the induced fit and population shift scenarios

Author:

Ravasio Riccardo,Flatt Solange,Yan Le,Zamuner Stefano,Brito Carolina,Wyart Matthieu

Abstract

In allosteric proteins, binding a ligand can affect function at a distant location, for example by changing the binding affinity of a substrate at the active site. The induced fit and population shift models, which differ by the assumed number of stable configurations, explain such cooperative binding from a thermodynamic viewpoint. Yet, understanding what mechanical principles constrain these models remains a challenge. Here we provide an empirical study on 34 proteins supporting the idea that allosteric conformational change generally occurs along a soft elastic mode presenting extended regions of high shear. We argue, based on a detailed analysis of how the energy profile along such a mode depends on binding, that in the induced fit scenario there is an optimal stiffness for cooperative binding, where N is the number of residues involved in the allosteric response. We find that the population shift scenario is more robust to mutation affecting stiffness, as binding becomes more and more cooperative with stiffness up to the same characteristic value , beyond which cooperativity saturates instead of decaying. We confirm numerically these findings in a non-linear mechanical model. Dynamical considerations suggest that a stiffness of order is favorable in that scenario as well, supporting that for proper function proteins must evolve a functional elastic mode that is softer as their size increases. In consistency with this view, we find a significant anticorrelation between the stiffness of the allosteric response and protein size in our data set.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3