Metabolic network reductions

Author:

Tefagh MojtabaORCID,Boyd Stephen P.

Abstract

AbstractGenome-scale metabolic networks are exceptionally huge and even efficient algorithms can take a while to run because of the sheer size of the problem instances. To address this problem, metabolic network reductions can substantially reduce the overwhelming size of the problem instances at hand. We begin by formulating some reasonable axioms defining what it means for a metabolic network reduction to be “canonical” which conceptually enforces reversibility without loss of any information on the feasible flux distributions. Then, we start to search for an efficient way to deduce some of the attributes of the original network from the reduced one in order to improve the performance. As the next step, we will demonstrate how to reduce a metabolic network repeatedly until no more reductions are possible. In the end, we sum up by pointing out some of the biological implications of this study apart from the computational aspects discussed earlier.Author summaryMetabolic networks appear at first sight to be nothing more than an enormous body of reactions. The dynamics of each reaction obey the same fundamental laws and a metabolic network as a whole is the melange of its reactions. The oversight in this kind of reductionist thinking is that although the behavior of a metabolic network is determined by the states of its reactions in theory, nevertheless it cannot be inferred directly from them in practice. Apart from the infeasibility of this viewpoint, metabolic pathways are what explain the biological functions of the organism and thus also what we are frequently concerned about at the system level.Canonical metabolic network reductions decrease the number of reactions substantially despite leaving the metabolic pathways intact. In other words, the reduced metabolic networks are smaller in size while retaining the same metabolic pathways. The possibility of such operations is rooted in the fact that the total degrees of freedom of a metabolic network in the steady-state conditions are significantly lower than the number of its reactions because of some emergent redundancies. Strangely enough, these redundancies turn out to be very well-studied in the literature.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3