The pneumococcal two-component system VisRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pneumocytes

Author:

Reinoso-Vizcaíno Nicolás M.,Cian Melina B.,Cortes Paulo R.,Olivero Nadia B.,Hernandez-Morfa Mirelys,Piñas Germán E.,Badapanda Chandan,Rathore Ankita,Perez Daniel R.,Echenique José

Abstract

AbstractThe virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system VisRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔvisR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔvisR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the VisRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.Author summaryS. pneumoniae is an inhabitant of the human nasopharynx that is capable of causing a variety of infections contributing to an estimated 1.6 million deaths each year. Many of these deaths occur as result of secondary S. pneumoniae infections following seasonal or pandemic influenza. Although S. pneumoniae is considered a typical extracellular pathogen, an intracellular survival mechanism has been more recently recognized as significant in bacterial pathogenesis. The synergistic effects between influenza A and S. pneumoniae in secondary bacterial infection are well documented; however, the effects of influenza infections on intracellular survival of S. pneumoniae are ill-defined. Here, we provide evidence that influenza infection increases S. pneumoniae intracellular survival in pneumocytes. We demonstrate that the poorly understood VisRH signal transduction system in pneumococcus controls the expression of genes involved in the stress response that S. pneumoniae needs to increase intracellular survival in influenza A-infected pneumocytes. These findings have important implications for understanding secondary bacterial pathogenesis following influenza and for the treatment of such infections in influenza-stricken patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3