Aboave-Weaire’s law in epithelia results from an angle constraint in contiguous polygonal lattices

Author:

Vetter RomanORCID,Kokic Marco,Gómez Harold,Hodel Leonie,Gjeta Bruno,Iannini Antonella,Villa-Fombuena Gema,Casares Fernando,Iber DagmarORCID

Abstract

ABSTRACTIt has long been noted that the cell arrangements in epithelia, regardless of their origin, exhibit some striking regularities: first, the average number of cell neighbours at the apical side is (close to) six. Second, the average apical cell area is linearly related to the number of neighbours, such that cells with larger apical area have on average more neighbours, a relation termed Lewis’ law. Third, Aboav-Weaire’s (AW) law relates the number of neighbours that a cell has to that of its direct neighbours. While the first rule can be explained with topological constraints in contiguous polygonal lattices, and the second rule (Lewis’ law) with the minimisation of the lateral contact surface energy, the driving forces behind the AW law have remained elusive. We now show that also the AW law emerges to minimise the lateral contact surface energy in polygonal lattices by driving cells to the most regular polygonal shape, but while Lewis’ law regulates the side lengths, the AW law controls the angles. We conclude that global apical epithelial organization is the result of energy minimisation under topological constraints.

Publisher

Cold Spring Harbor Laboratory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3