A role for gene-environment interactions in Autism Spectrum Disorder is suggested by variants in genes regulating exposure to environmental factors

Author:

Santos João Xavier,Rasga Célia,Marques Ana Rita,Martiniano Hugo F. M. C.,Asif Muhammad,Vilela Joana,Oliveira Guiomar,Vicente Astrid Moura

Abstract

AbstractIntroductionAutism Spectrum Disorder (ASD) is a clinically heterogeneous neurodevelopmental disorder defined by deficits in social communication and interaction and repetitive and stereotyped interests and behaviors. ASD heritability estimates of 50-83% support a strong role of genetics in its onset, with large sequencing studies reporting a high burden of rare potentially pathogenic copy number variants (CNVs) and single nucleotide variants (SNVs) in affected subjects. Recent data strongly suggests that prenatal to postnatal exposure to ubiquitous environmental factors (e.g. environmental toxins, medications and nutritional factors) contribute to ASD risk. Detoxification processes and physiological permeability barriers (i.e. blood-brain barrier, placenta and respiratory cilia) are crucial in regulating exposure and response to external agents during early development. Thus, the objectives of this study were: 1) to find genes involved in detoxification and regulation of barriers permeability with a high load of relevant CNVs and SNVs in ASD subjects; 2) to explore interactions between the identified genes and environmental factors relevant for the disorder.Material and MethodsThrough literature and databases review we searched for genes involved in detoxification and regulation of barriers permeability processes. Genetic data collected from large datasets of subjects with ASD (Autism Genome Project (AGP), Simmons Simplex Collection (SSC), and Autism Sequencing Consortium (ASC)) was used to identify potentially pathogenic variants targeting detoxification and barrier genes. Data from control subjects without neuropsychiatric disorder history was used for comparison purposes. The Comparative Toxicogenomics Database (CTD) was interrogated to identify putatively relevant gene-environment interactions reported in humans throughout the literature.ResultsWe compiled a list of 519 genes involved in detoxification and regulation of permeability barriers. The analysis of AGP and SSC data resulted in the identification of 7 genes more-frequently targeted by CNVs in ASD-subjects from both datasets, after Bonferroni correction for multiple testing (AGP: P<3.5211×10−4; SSC: P< 4.587×10−4). Moreover, 8 genes were exclusively targeted by CNVs from ASD subjects. Regarding SNVs analyses using the ASC dataset, we found 40 genes targeted by potentially pathogenic loss-of-function and/or missense SNVs exclusive to 6 or more cases. The CTD was interrogated for interactions between 55 identified genes and 54 terms for unique chemicals associated with the disorder. A total of 212 gene-environment interaction pairs, between 51/55 (92.7%) genes and 38/54 (70.4%) chemicals, putatively relevant for ASD, were discovered. ABCB1, ABCG2, CYP2C19, GSTM1, CYP2D6, and SLC3A2 were the genes that interacted with more chemicals, while valproic acid, benzo(a)pyrene (b(a)p), bisphenol A, particulate matter and perfluorooctane sulfonic acid (PFOS) were the top chemicals.DiscussionThe identified genes code for functionally diverse proteins, ranging from enzymes that increase the degradability of xenobiotics (CYP450s, UGTs and GSTs), to transporters (ABCs and SLCs), proteins that regulate the correct function of barriers (claudins and dyneins) and placental hormones. The identified gene-environment interactions may reflect the fact that some genes and chemicals are understudied and that the potential neurotoxicity of many substances is unreported. We suggest that environmental factors can have pathogenic effects when individuals carry variants targeting these genes and discuss the potential mechanisms by which these genes can influence ASD risk.ConclusionWe reinforce the hypothesis that gene-environment interactions are relevant, at least, for a subset of ASD cases. Given that no treatment exists for the pathology, the identification of relevant modifiable exposures can contribute to the development of preventive strategies for health management policies in ASD.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3