Abstract
ABSTRACTMaturation of attentional processes is central to cognitive development. The electrophysiological P300 is associated with rapid allocation of attention, and bridges stimulus and response processing. P300 is among the most studied and robust electrophysiological components, but how different subcomponents of the P300 develop from childhood to adulthood and relate to structural properties of the cerebral cortex is not well understood. We investigated age-related differences in both early visual and P300 components, and how individual differences in these components related to cortical structure in a cross-sectional sample of participants 8-19 years (n=86). Participants completed a three-stimulus visual oddball task while high-density EEG was recorded. Cortical surface area and thickness were estimated from T1-weighthed MRI. Group-level blind source separation of the EEG data identified two P300-like components, a fronto-central P300 and a parietal P300, as well as a component reflecting N1 and P2. Differences in activity across age were found for the parietal P300, N1 and P2, with the parietal P300 showing stronger activity for older participants, while N1 and P2 were stronger for younger participants. Stronger P300 components were positively associated with task performance, independently of age, while negative associations were found for P2 strength. Parietal P300 strength was age-independently associated with larger surface area in a region in left lateral inferior temporal cortex. We suggest that the age differences in component strength reflect development of attentional mechanisms, with increased brain responses to task-relevant stimuli representing an increasing ability to focus on relevant information and to respond accurately and efficiently.
Publisher
Cold Spring Harbor Laboratory