Role of Physicochemical Properties of Protein in Modulating the Nanoparticle-Bio interface

Author:

Dhar SunandanORCID,Sood VisheshORCID,Lohiya GarimaORCID,Devenderan Harini,Katti Dhirendra S.ORCID

Abstract

AbstractNanoparticles, on exposure to the biological milieu, tend to interact with macromolecules to form a biomolecular corona. The biomolecular corona confers a unique biological identity to nanoparticles, and its protein composition plays a deterministic role in the biological fate of nanoparticles. The physiological behavior of proteins stems from their physicochemical aspects including surface charge, hydrophobicity, and structural stability. However, there is insufficient understanding about the role of physicochemical properties of proteins in biomolecular corona formation. We hypothesized that the physicochemical properties of proteins would influence their interaction with nanoparticles and have a deterministic effect on nanoparticle-cell interactions. To test our hypothesis, we used model proteins from different structural classes to understand the effect of secondary structure elements of proteins on the nanoparticle-protein interface. Further, we modified the surface of proteins to study the role of protein surface characteristics in governing the nanoparticle-protein interface. For this study, we used mesoporous silica nanoparticles as a model nanoparticle system. We observed that the surface charge of proteins governs the nature of the primary interaction as well as the extent of subsequent secondary interactions causing structural rearrangements of the protein. We also observed that the secondary structural contents of proteins significantly affected both the extent of secondary interactions at the nanoparticle-protein interface and the dispersion state of the nanoparticle-protein complex. Further, we also studied the interactions of different protein-coated nanoparticles with different types of cell (fibroblast, carcinoma, and macrophage). We observed that different cells internalized nanoparticle-protein complex as a function of secondary structural components of the protein. The type of model protein had a significant effect on their internalization by macrophages. Overall, we observed that the physicochemical characteristics of proteins had a significant role in modulating the nanoparticle-bio-interface at the level of both biomolecular corona formation and nanoparticle internalization by cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3