Abstract
AbstractIn order to rationally design biopolymers that mimic biological functions, first, we need to elucidate the molecular mechanisms followed by nature. For example, the viral capsid is a macromolecular complex formed by self-assembled proteins which, in many cases, are biopolymers with an identical amino acid sequence. Specific protein-protein interactions drive the capsid self-assembly process, leading to several distinct protein interfaces. Following the hot-spot hypothesis, we propose a conservation-based methodology to identify those interface residues that are crucial elements on the self-assembly and thermodynamic stability of the capsid. We validate our predictions by computational free energy calculations using an atomic-scale molecular model of an icosahedral virus. Our results show that a single mutation in any of the hot-spots significantly perturbs the quaternary interaction, decreasing the absolute value of the binding free energy, without altering the tertiary structure. Our methodology can lead to a strategy to rationally modulate the capsid’s thermodynamic properties.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献