PANDAA-monium: Intentional violations of conventional qPCR design enables rapid, HIV-1 subtype-independent drug resistance SNP detection

Author:

MacLeod Iain J.ORCID,Rowley Christopher F.,Essex M.

Abstract

ABSTRACTGlobal efforts to ensure that 90% of all HIV-infected people receiving antiretroviral therapy (ART) will be virally suppressed by 2020 could be crippled by increases in acquired and transmitted HIV drug resistance (HIVDR), which challenge ART efficacy. The long-term sustainability of ART treatment programs is contingent on effective HIVDR monitoring yet current Sanger sequencing genotypic resistance tests are inadequate for large-scale implementation in low- and middle-income countries (LMICs). A simple, rapid, affordable HIVDR diagnostic would radically improve the treatment paradigm in LMICs by facilitating informed clinical decision-making upon ART failure. Although point mutation assays can be broadly deployed in this context, the primary challenge arises from extensive sequence variation surrounding targeted drug resistance mutations (DRMs). Here, we systematically and intentionally violate the canonical principles of qPCR design to develop a novel assay, Pan-Degenerate Amplification and Adaptation (PANDAA), that mitigates the impact of DRM-proximal secondary polymorphisms on probe-based qPCR performance to enable subtype-independent, focused resistance genotyping. Using extremely degenerate primers with 3’ termini overlapping the probe-binding site, the HIV-1 genome is adapted through site-directed mutagenesis to replace secondary polymorphisms flanking the target DRM during the initial qPCR cycles. We show that PANDAA can quantify key HIV DRMs present at ≥5% and has diagnostic sensitivity and specificity of 96.9% and 97.5%, respectively, to detect DRMs associated with ART failure. PANDAA is an innovative solution for HIVDR genotyping and is an advancement in qPCR technology that could be applicable to any scenario where target-proximal genetic variability has been a roadblock in diagnostic development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3