Middle-way flexible docking: Pose prediction using mixed-resolution Monte Carlo in estrogen receptor α

Author:

Spiriti Justin,Subramanian Sundar Raman,Palli Rohith,Wu Maria,Zuckerman Daniel M.

Abstract

AbstractThere is a vast gulf between the two primary strategies for simulating protein-ligand interactions. Docking methods significantly limit or eliminate protein flexibility to gain great speed at the price of uncontrolled inaccuracy, whereas fully flexible atomistic molecular dynamics simulations are expensive and often suffer from limited sampling. We have developed a flexible docking approach geared especially for highly flexible or poorly resolved targets based on mixed-resolution Monte Carlo (MRMC), which is intended to offer a balance among speed, protein flexibility, and sampling power. The binding region of the protein is treated with a standard atomistic force field, while the remainder of the protein is modeled at the residue level with a Gō model that permits protein flexibility while saving computational cost. Implicit solvation is used. Here we assess three facets of the MRMC approach with implications for other docking studies: (i) the role of receptor flexibility in cross-docking pose prediction; (ii) the use of non-equilibrium candidate Monte Carlo (NCMC) and (iii) the use of pose-clustering in scoring. We examine 61 co-crystallized ligands of estrogen receptor α, an important cancer target known for its flexibility. We also compare the performance of the MRMC approach with Autodock smina, a docking program. [1] Adding protein flexibility, not surprisingly, leads to significantly lower total energies and stronger interactions between protein and ligand, but notably we document the important role of backbone flexibility in the improvement. The improved backbone flexibility also leads to improved performance relative to smina. Somewhat unexpectedly, our implementation of NCMC leads to only modestly improved sampling of ligand poses. Overall, the addition of protein flexibility improves the performance of docking, as measured by energy-ranked poses, but we do not find significant improvements based on cluster information or the use of NCMC.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3