Neural representation of bat predation risk and evasive flight in moths: a modelling approach

Author:

Goerlitz Holger R.ORCID,ter Hofstede Hannah M.,Holderied Marc W.

Abstract

AbstractMost animals are at risk from multiple predators and can vary anti-predator behaviour based on the level of threat posed by each predator. Animals use sensory systems to detect predator cues, but the relationship between the tuning of sensory systems and the sensory cues related to predator threat are not well-studied at the community level. Noctuid moths have ultrasound-sensitive ears to detect the echolocation calls of predatory bats. Here, combining empirical data and mathematical modelling, we show that moth hearing is adapted to provide information about the threat posed by different sympatric bat species. First, we found that multiple characteristics related to the threat posed by bats to moths correlate with bat echolocation call frequency. Second, the frequency tuning of the most sensitive auditory receptor in noctuid moth ears provides information allowing moths to escape detection by all sympatric bats with similar safety margin distances. Third, the least sensitive auditory receptor usually responds to bat echolocation calls at a similar distance across all moth species for a given bat species. If this neuron triggers last-ditch evasive flight, it suggests that there is an ideal reaction distance for each bat species, regardless of moth size. This study shows that even a very simple sensory system can adapt to deliver information suitable for triggering appropriate defensive reactions to each predator in a multiple predator community.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3