Author:
Engelberg Klemens,Chen Chun-Ti,Bechtel Tyler,Guzmán Victoria Sánchez,Drozda Allison A.,Chavan Suyog,Weerapana Eranthie,Gubbels Marc-Jan
Abstract
AbstractThe apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1-5), Centrin2 and a methyltransferase (AAMT). Moreover, Inner Membrane Complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super-resolution microscopy (SR-SIM) identified a concentric organization comprising four rings with diameters ranging from 200-400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggest that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed the AAPs are conserved narrowly in Coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signaling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring-like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled-coil and signaling proteins assembled in a pore-like structure crossing the IMC barrier maintained during internal budding.
Publisher
Cold Spring Harbor Laboratory