Predictability matters: role of the hippocampus and prefrontal cortex in disambiguation of overlapping sequences

Author:

Cohen Justine E.,Ross Robert S.,Stern Chantal E.

Abstract

Previous research has demonstrated that areas in the medial temporal lobe and prefrontal cortex (PFC) show increased activation during retrieval of overlapping sequences. In this study, we designed a task in which degree of overlap varied between conditions in order to parse out the contributions of hippocampal and prefrontal subregions as overlap between associations increased. In the task, participants learned sequential associations consisting of a picture frame, a face within the picture frame, and an outdoor scene. The control condition consisted of a single frame-face-scene sequence. In the low overlap condition, each frame was paired with two faces and two scenes. In the high overlap condition, each frame was paired with four faces and four scenes. In all conditions the correct scene was chosen among four possible scenes and was dependent on the frame and face that preceded the choice point. One day after training, participants were tested on the retrieval of learned sequences during fMRI scanning. Results showed that the middle and posterior hippocampus (HC) was active at times when participants acquired information that increased predictability of the correct response in the overlapping sequences. Activation of dorsolateral PFC occurred at time points when the participant was able to ascertain which set of sequences the correct response belonged to. The ventrolateral PFC was active when inhibition was required, either of irrelevant stimuli or incorrect responses. These results indicate that areas of lateral PFC work in concert with the HC to disambiguate between overlapping sequences and that sequence predictability is key to when specific brain regions become active.

Funder

National Institutes of Health

Naval Research Multidisciplinary University Research Initiative

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3